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a b s t r a c t

A linear sorter based on a first-in first-out (FIFO) scheme is presented. It is capable of discarding the

oldest stored datum and inserting the incoming datum while keeping the rest of the stored data sorted

in a single clock cycle. This type of sorter can be used as a co-processor or as a module in specialized

architectures that continuously require to process data for non-linear filters based on order statistics.

This FIFO sorting process is described by four different parallel functions that exploit the natural

hardware parallelism. The architecture is composed of identical processing elements; thus it can be

easily adapted to any data lengths, according to the specific application needs. The use of compact

identical processing elements results in a high performance yet small architecture. Some examples are

presented in order to understand the functionality and initialization of the proposed sorter. The results

of synthesizing the proposed architecture targeting a field programmable gate array (FPGA) are

presented and compared against other reported hardware-based sorters. The scalability results for

several sorted elements with different bits widths are also presented.

& 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Sorting is one of the most important operations performed by
computers. Given their practical importance, algorithms for
sorting data have been the focus of extensive research, resulting
in several algorithms proposed to address specific problems. First,
serial sorting algorithms were investigated. Then parallel sorting
algorithms became a very active area of research, and several
models of parallel computations have been considered and
developed, deriving in sorting algorithms that later on were
implemented in hardware. All developed serial algorithms
implemented in software are evaluated by their time complexity
and other properties such as the time-memory trade-offs (the
amount of additional memory required to run the algorithm and
the memory for storing the initial sequence), stability, and
sensitivity to the initial distribution of the data (best and worst
cases). In parallel processing, when processors share a common
memory, the idea of contiguous memory locations is identical to
that in serial processors. Therefore, this situation can be analyzed
identically as the serial case.

When the processors do not share memory and they commu-
nicate with each other through an interconnection network, the
ll rights reserved.
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time complexity is expressed in terms of parallel comparisons and
exchanges between adjacent processors [1,2].

For certain applications, like median filters, asynchronous
transfer mode (ATM) switching, order statistics filtering and, in
general, continuous data processing, sometimes software-only
implementations of sorting algorithms do not achieve the
required processing speed [3]. In order to speed up the sorting
operation, some custom hardware architectures have been
proposed in recent years. The relatively simple logic required for
sorting and the inherent concurrency of the algorithms have
allowed exploring a number of custom architectures. Hardware
sorters are evaluated according to area requirements (number of
flip–flops, comparators, control logic, gates, and LUTs), processing
time, including latency and maximum operating frequency, and
power consumption. Hardware sorters can be grouped into two
kinds of architectures: sorting networks, including some systolic
architectures, and linear arrays. The main idea behind sorting
networks is to sort a block of data passing through a network of
processing elements (PE) connected in such way that a datum
takes its corresponding place. Linear sorters are based on the idea
that data to be sorted come in a continuous stream, one datum at
a time; each datum is inserted into its corresponding place in a
register group (sorting array) at the same time that one of the
stored data is deleted. Fig. 1.a represents the sorting network idea,
where data are firstly stored and then sorted by a sorting network
in a parallel fashion [4]. The gray blocks represent the first and the
last stored datum. The first stored datum is the first element
leaving the file register, i.e. like in an FIFO scheme. Fig. 1.b
represents the linear sorter idea, where data are always sorted,
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Fig. 1. Sorting network and linear sorter.

Fig. 2. Sorting network example.

R. Perez-Andrade et al. / Microelectronics Journal 40 (2009) 1705–17131706
thus the first and the last datum are merged inside the sorting
array. On these sorters, a deleting mechanism must be used in
order free space for incoming data. Some examples of these
mechanisms are deleting the oldest datum, selecting one datum
or deleting the greatest or the smallest one.

This work is based on the idea of sorting the data as they are
introduced into the sorting array, discarding the oldest datum in
the sorting array while maintaining the data sorted, all that in a
single clock cycle. This FIFO scheme can be used in applications
that are continuously processing data in serial fashion like non-
linear filters such as the rank-order filters, weighted order
statistics (WOS) filters, and stack filters. These non-linear filters
are based on order statistics, thus require to access an ordered list
of the random variables X1, X2, X3,y, Xn. An ascending sequence
can be represented as follows:

X1rX2rX3r ; . . . ; Xn ð1Þ

where indexes indicate the rank-order number. The idea on rank-
order filters is to select a value Xi, where iA{1, 2, 3,y, n} from the
sequence in Eq. (1) and then to use this Xi value as a sample of the
sorted data.

Several signal processing applications based on order statistics
require a sorter with an FIFO-like behavior. For example, in image
processing, non-linear filters such as: rank order, max/min, mean,
morphological, and adaptive trimmed mean are commonly used
as they offer benefits such as edge preservation, robustness,
adaptation to noise statistics, and preservation of image details
[5,6]. Other applications can be found in radar and sonar systems
where the detection procedures involve the comparison of the
received signal amplitude to a threshold. This threshold is
obtained by using a constant false alarm ratio (CFAR) algorithm,
which requires keeping sorted the incoming echo samples [7].
More examples of applications in signal processing are: smooth-
ing of time-series, maximum likelihood estimation, and one-
dimensional non-linear filtering [8].

These applications require accessing a value from a specific
position within a sorted array, more than one value simulta-
neously, or even the whole set of values in the array to perform
parallel operations, thus making traditional FIFO memories with a
single output port unsuitable. The proposed architecture for the
insertion sort algorithm has an FIFO-like behavior, i.e. it discards
the oldest datum when a new one arrives, while allowing flexible
access to its contents.
2. Related work

As mentioned earlier, several hardware architectures for
performing sorting algorithms have been proposed. These archi-
tectures can be grouped in two families according to the
algorithm they use: sorting networks and linear sorters. The
sorting networks are based on a network constituted by several
PEs, which consists of a comparator and are located in the nodes
of the network. The goal of each PE is sorting two input data in
ascending (or descending) order by placing the larger (or smaller)
datum in a specific output [4]. This technique supposes that a
block of data is available for being sorted in parallel fashion. Sorter
networks can be pipelined in order to reduce their critical path
and latency, thus resulting in a better throughput. The disadvan-
tage of this approach is that the network can potentially require a
large number of PEs and, depending on the algorithm, several
clock cycles for sorting the whole block of data. Besides, even if
only one input datum changes, the whole block of data must be
resorted. The efficiency of these sorters can be measured by its
total size (numbers of PEs) and by its depth (maximum number of
PEs from input to output). Both metrics are highly dependant on
the number of data the architecture can sort. Fig. 2 shows an eight
elements input sorting network example, whose size is of 24 PEs
and has a depth of 6 stages. Each PE is represented by two
interconnected nodes.
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Fig. 3. Linear sorter example.
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Linear sorters are useful when sorting data streams and where
sorting operation must be carried out after each input datum is
received. Linear sorters are composed of a group of cells, each of
them capable of deciding if an internal register should hold its
current value or update it, either using the input datum or a
datum stored in adjacent cells. The advantages of this approach
are that it uses fewer area resources and data are always sorted.
Fig. 3 shows a linear sorter example, which inserts the input
datum in its corresponding place and discards the greatest datum
stored.

2.1. Sorting networks

Batcher [9] introduced the concept of sorting networks. In his
work he presented the odd–even merging and bitonic networks.
The odd–even merging network consists of two networks that sort
all the data contained in odd and even positions separately,
applying an interactive rule. The bitonic network works, similarly
to the odd–even, merging two monotonic sequences, one in
ascending order and the other in descending order. These two
monotonic sequences are built by sorting the input data in
ascending and descending lists, and merging them. The nodes of
both networks are built using PEs. The odd–even network can
only sort a n fixed number of data. If n changes, the network must
be rearranged. For this reason Kou and Huang [10] proposed a
modification of the odd–even sorting network. They proposed a
network that can sort any m input data smaller than n, which is
the maximum number of data that the network can sort. Tabrizi
and Bagherzadeh [11] use a different sorting scheme: basically,
they use a tree as a network implemented in an ASIC, where the
leaves of the tree are the inputs and the root node is the output.
This scheme works in a parallel input-serial output (PISO) fashion,
thus requiring several clock cycles to flush the tree after the
beginning of the process. Hirschil and Yaroslavsky [12] propose
three different sorting architectures. One of these architectures
does not work as a sorting network neither it sorts the elements;
instead it ranks the input data. This parallel rank computer (PRC)
receives, in a parallel fashion, a vector of n numbers and produces
their ranks in two clock cycles. The rank of each number is
calculated by comparing every pair of numbers and summing the
comparison values.

2.2. Linear sorters

The other two sorting architectures proposed in [12] are based
on shift register architectures operating in an FIFO scheme. One of
these architectures, called the serial rank computer (SRC),
includes two attributes: value and rank. The incoming data are
arranged according to their arrival sequence accompanying each
number with its calculated rank. The other architecture, a serial
FIFO sorter (SFS), stores an input vector of data in the order it
received. This scheme is different from regular FIFO schemes as it
keeps the data ordered by magnitude, still data leave the sorter in
an FIFO fashion. A VLSI sorter implementation is presented by
Colavita et al. [3] They propose a shift register architecture based
on a basic sorting unit (BSU), which contains two registers to store
the data and an associated tag, a comparator, and a small logic
circuit. This implementation is able to continuously process an
input data stream while producing a sorted output in the same
way. Data are sorted according to the tags preserving the order of
words with identical tags.

Chi-Sheng and Bin-Da Liu [13] propose a sorter that uses a
column of n PEs to progressively sort n data. These PEs are
composed of two registers and a compare-swap cell (CS), which is
built by a comparator and a swap unit. The cells are connected in
cascade, so their outputs are attached to the inputs of their
successors. The idea of the PE is to allow the previous data being
held by the PE or shifted to the successor PE at each clock cycle.
Ribas et al. [14] propose a sorting array (linear shifter) built on
data-slice cells. This scheme requires minimal control logic and it
is easily expandable. The idea of this sorter is based on the
insertion sorting algorithm, which for every unsorted datum looks
for the right position in the sorted list in order to perform the
insertion of the unsorted datum into its corresponding place. This
architecture only shifts data to one direction, discarding the
smallest datum. The data-slice cell is composed of a multiplexer, a
register and a comparator, resulting in a compact and simple
architecture. A similar sorting scheme is proposed in [15], where
data contained in the sorting array can be left o right shifted
depending on the operation to perform, insertion, or descarding.
Both the datum to be inserted and the one to be deleted are
specificated by the input signal. To perform the inserting or
deleting process, the cell must perform four basic operations: shift
right, shift left, load, and initialize.

For applications that require continuously data processing,
sorting networks are not the best option, as they may become
a processing bottleneck. Although pipelining techniques can be
applied, there is a latency time that must be considered as a trade-
off. Linear sorters have a better performance for these data
streaming applications. The linear sorters mentioned in the
literature have different features that make them suitable
for different applications, in this case, an FIFO sorting behavior
for performing the rank-order operation. The SFS presented by
Hirschil and Yaroslavsky [12] works in an FIFO basis and it needs
n+1 cells to sort n elements and two levels of memory elements.
The sorters proposed in [13] and [14] only keep the greatest
data discarding the smallest one from the linear sorter. Therefore,
the FIFO functionality is not achieved by these two linear sorters.
The sorter proposed in [15] can achieve the FIFO functionality
only if the external logic specifies that the oldest datum is the one
to be discarded. Our proposed solution achieves the FIFO
functionality, as the SFS, but it requires less logic, working on
one clock edge. It takes some ideas from previous works,
especially from [12] and [13], but it has been modified to work
in an FIFO fashion.
3. Proposed insert sort functions

The proposed linear sorter is based on the insertion sort
algorithm. This algorithm performs, for every unsorted datum, a
procedure that looks for the appropriate position in the sorted list
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to insert the incoming datum [14]. The algorithm is presented in
the next pseudo-code:
Fig. 4. Sorting array.
function InsertSort
for each unsorted D {

i=0;
while(ion) and (D4R[i]) ) {

R[i]=R[i+1];
i= i+1;

}
if (i= =0)

discard D;
else
R[i�1]=D;
}end function;
Fig. 5. Insertion cases.
On each iteration, this algorithm inserts an incoming datum
into the vector R of length n (n40) in ascending form and discards
the datum with the smaller value, which is located in R[0]. To
ensure a proper behavior it is assumed that the value stored in
R[n] exists and is larger than any value to be sorted, i.e. it
represents infinity. In case that the incoming datum is smaller
than R[0], it will not be inserted into the array and will be
discarded as indicated by the sentence discard D.

The while sentence can be easily converted to a for loop with
bounded limits. This transformation makes the algorithm suitable
to be parallelized. The next code shows the result of this
transformation.
function InsertSort
for each unsorted D {

for(i=0; io n; i++){
if(D 4 R[i]){

R[i]=R[i+1];
if(D o =R[i+1])

R[i]=D;
}

}

}end function;
As vector R has a finite length, a discarding condition must be
used in order to provide an empty space for the incoming datum.
In [14], the condition used for deleting is to discard the smallest
stored datum, meanwhile in [15], the datum to be discarded is
indicated by an external input signal. In the proposed architecture,
an FIFO scheme is used i.e. the oldest datum in the array is
discarded, allowing for the incoming datum to be inserted in its
corresponding position. In order to achieve an FIFO-like operation,
it is necessary to keep a life period value for each sorted data. If
the datum is shifted, then its corresponding life period value is
shifted as well. The life period value is increased by one every
time a new datum is inserted. When the life period value has
expired, that is, when it reaches a value equal to the number of
elements in the array (n), the corresponding datum is discarded,
making an empty space in the vector and thus allowing the
insertion of a new datum. For this scheme, three different
operations may be performed in order to keep the array sorted:
shift the datum and life period value to the left, to the right, or
hold the datum. To know the direction the data should be shifted
to, every element in the array must know on which side, on
relation to itself, the datum that is going to be discarded is located.
Also, it must know on which side the incoming datum must be
stored.

This functionality can be achieved by creating an array of PEs,
called the sorting basic cell (SBC). In order to fulfill the FIFO
functionality, the SBCs must be interconnected (Fig. 4) in a simple
linear structure, called sorting array. This linear structure can be
easily expanded depending on the application. For each iteration,
one of the SBCs must discard its value and, at the same time, all
the SBCs must either hold their previous value, or store the value
coming from one of the neighbor cells (left or right). Only one
clock cycle is needed to perform these actions (discarding the
oldest data, holding data, right or left shifting). Under this FIFO
sorting functionality, there are three insertion cases that are
considered and solved by the SBC (shown in Fig. 5, where the gray
cell indicates the location of the datum to be discarded):
(1)
 The incoming datum is inserted to the left of the cell that
discards its stored value. In this case, data from R[i] to R[n�2]
must be shifted to the right side and the incoming data is
inserted in R[i].
(2)
 The incoming datum is inserted to the right of the cell that
discards its stored value. In this case, data from R[i] to R[3]
must be shifted to the left side and the incoming datum is
inserted in R[i].
(3)
 The incoming datum is inserted at the same position of
the discarded value i.e. R[i]. The rest of the cells hold their
values.
In order to support these three insertion cases, each SBC must
perform four different functions. These functions describe the
interaction that the ith SBC has with its neighbors through
different signals. Fig. 6 shows the interconnections between two
SBCs, where the i+1 and i�1 indexes represent incoming signals
from the right and left SBC neighbor, respectively. Please note that
for the sake of clarity, in all figures that describe the cells and
sorting array, the register or cell that holds the variable R[i] will be
labeled as Ri. This also applies to other registers that hold
variables that require an index i.

In order to explain the previously mentioned functions, we
define the next variables: CNT[i] stores the life period value of the
ith SBC, the data stored on the ith SBC is represented by R[i], cnt[i]
is a flag that indicates that life period value from a SBC to the right
has expired. D_right and D_left are the output ports to the right
and left sides of the SBC, respectively.
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Fig. 6. Connection of two SBCs.
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function SBC_SendData
D=Incoming Data;
if (R[i] 4 D){

D_right=R[i];
D_left=D;
}else{
D_right=D;
D_left=R[i];
}end function;
The SBC_SendData function sends to its left and right neighbors
the value it currently stores and the incoming data, D_left and
D_right SBC, respectively. If the first condition is met, it indicates
that this SBC must send to its right, its current value (R[i]) and to
the left, the incoming datum, otherwise it must send to its left, its
current value and to the right, the incoming datum.
function SBC_ResetPeriodLife
D=Incoming Data;
if(CNT[i]= =n) or (R[i] 4D xor cnt[i+1]= =1){

if (R[i] 4D) and not (R[i+1] 4D){
CNT[i]=0;

}
if not (R[i] 4D) and (R[i�1]4D){

CNT[i]=0;
}

}end function;
The SBC_ResetPeriodLife function sets to zero the life period
value if certain conditions are met. The first condition of this
function checks if the CNT[i] has reached its maximum value or if
the incoming datum D must be inserted in the ith SBC (exclusive
or between the cnt[i+1] and R[i] 4D). The inner conditions check
those cases where the SBC’s counter must be set to zero. This
action takes place when the incoming datum will be stored on the
ith SBC, therefore setting the life period value to zero is needed.
These conditions allow to set to zero the life period value in only
one SBC inside the sorting array at a same time.
function SBC_UpdateValues
D=Incoming Data;
if(CNT[i]= =n) or (R[i]4D xor cnt[i+1]= =1){

if (R[i]4D){
R[i]=R[i+1];
CNT[i]=CNT[i+1];

}else{
R[i]=R[i�1];
CNT[i]=CNT[i�1];

}

} end function;
The SBC_UpdateValues function is in charge of updating the
store value and the life period value coming from one of the
neighbors. In order to know which neighbor to take the new value
form, two conditions must be met. The first condition checks if the
CNT[i] has reached its maximum value or if the incoming datum D

must be inserted in the ith SBC (exclusive or between the cnt[i+1]
and R[i]4D), similar to the SBC_ResetPeriodLife function. The
second condition selects which neighbor (left or right) the R[i] and
CNT[i] variables of the ith SBC must take their value from. Even
though the first condition is the same as the one shown in the
SBC_ResetPeriodLife function, they are separated because there is
a priority order; if both conditions are met then only the
SBC_ResetPeriodLife function should be performed.
function SBC_PropagateFlag
if(CNT[i]= =n or cnt[i+1]= =1){

cnt[i]=1;

} else{

cnt[i]=0;

}end function;
This final function, SBC_PropagateFlag, checks if the life period
value of the SBC has expired or the right SBC life period value has
expired; if so, then the cnt[i] flag is set to 1. The flag cnt[i] must not
be confused with CNT[i], because the first one is used by the
functions as one of the conditions to update the ith SBC,
meanwhile the second one is the life period value of the ith SBC.
These four functions describe the interactions the ith SBC has with
its neighbors and how these interactions allow the sorting array to
perform the three insertion cases previously described.

It is important to emphasize that the proposed sorter differs
from other sorters as it implements an FIFO-like scheme where
the oldest datum in the sorting array is discarded to make room
for every incoming data. Although our sorter performs the same
FIFO functionality of the SFS presented in [12], they differ in their
internal functionality. The SFS stores an input vector of data in the
order that it is received, discarding the oldest datum i.e. the FIFO
scheme. At each clock cycle, one datum enters taking its
corresponding place inside the sorter according to its value and
other datum leaves the sorter. These two characteristics are met
by our sorter too. Also, both sorters need to store the life period
value, however, the SFS sorter requires two levels of memory
elements: main and auxiliary; meanwhile our sorter only requires
one memory level. Moreover, the SFS needs n+1 cells to sort n

elements, requiring an overflow cell. On the other side, our sorter
needs only n cells to sort n elements. Although both the SFS and
our sorter operate in one clock cycle, the SFS works during both
clock edges: rising and falling edges. During the rising edge it
inserted the incoming datum by shifting the needed data to the
overflow cell side, having n+1 sorted elements. In the next falling
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Fig. 7. Architecture of the SBC.
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edge, the oldest stored datum in the n+1 cells is discarded by
shifting until the position of the overflow cell reaches the oldest
datum. Our sorter is able to perform all described operations in a
single clock edge, which is a desired featured in digital
architectures.
Fig. 8. Sorting array example functionality.
4. Sorting base cell

The proposed SBC has a register with synchronous load to store
the data, a counter with synchronous reset and load to store the
period life of the data, a ‘major than’ comparator, four 2–1
multiplexers and control logic (Fig. 7). In order to build the local
control unit of the SBC, the conditions presented in the four
functions previously described were mapped into boolean
equations. This control logic consists of four boolean equations,
which control the register, the counter, and the multiplexers.
Eq. (2) is used as a condition in SBC_ResetPeriodLife and
SBC_UpdateValues functions. Also this equation controls when
the register and the counter must take the neighbor value.
The origin of the data (left or right side) is selected by Eq. (3),
which is used in function SBC_UpdateValues. The function
SBC_ResetPeriodLife is represented by Eq. (4) and it indicates if
the counter must be set to zero. Finally, Eq. (5) detects and
propagates if the life period value of one of the SBCs to the right
has expired as indicated by the SBC_PropagateFlag function.

load¼ ðpi � cntiþ1Þþexpired ð2Þ

LR¼ pi dload ð3Þ

reset¼ load d½ðpi�1 dpiÞþðpi dpiþ1Þ� ð4Þ

cnti ¼ cntiþ1þexpired ð5Þ

where the signal pi is the comparator output as described by the
SBC_SendData function. If all comparators inside the sorting array
are inverted to a ‘minor than’ comparator, then the sorting array
would work in a descending fashion. The signals pi+ 1 and pi�1

correspond to the right and left SBC neighbors, respectively. The
signal expired indicates when the life period value has reached its
maximum value inside of one SBC and cnti+ 1 is the flag coming
from the SBC immediately to the right. This signal helps to detect
if the life period value of one SBC to the right has expired. In order
to perform correctly the insert sort algorithm, the left-most pi�1

signal value is always 1 and the right-most pi +1 signal value is
always 0. This can be viewed as the left-most datum having the
smallest value while the right-most has the largest one.
To ensure proper behavior, all registers Ri must be initialized to
zero, while life counter values CNT must be initialized according to
CNT[i]= i. The CNT counter word size depends on the sorting
array’s length, being a function of

dlog2 ne ð6Þ

where n is the sorting array length.
Figs. 8 and 9 exemplify how the SBC’s control signals work in

two different situations. In both figures, the first row contains the
sorted data currently stored in the sorting array in ascending
form, the second row contains the corresponding life period
values, and the following rows contain the control signals’ values
needed to perform the insertion operation. The gray column
indicates the oldest data to be discarded, whose period life value
is 12. Different clock cycles are represented by different tables in
the same figure. Only one SBC can have the reset signal asserted at
each clock cycle. When one SBC asserts the reset signal, it means
that this SBC is where the incoming datum D will take place in the
next clock cycle. The expired signal is only asserted when the SBC’s
period life value has reached the same value of the sorting array
length, meaning that this is the oldest datum stored (shown by
the gray columns). Similarly to the reset signal, only one SBC can
have the expired signal asserted at each clock cycle. Note how cnti
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Fig. 9. Sorting array example initialization.
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signal is propagated through the sorting array to the left side once
it is activated according to Eq. (5). Although LR signal is always
calculated according to Eq. (3), it is only considered when in the
same SBC the load signal is asserted.

Fig. 8 exemplifies how the SBC’s control signals work at each
clock cycle allowing the sorting array to perform the sorting
algorithm. Different clock cycles are represented by different
tables in the same figure. This figure illustrates the three
previously mentioned insert cases in a 3 steps sequence. In this
example, the array already holds sorted sequence (Fig. 8a). At the
first clock cycle, the incoming datum value is D=2. The control
signals take their corresponding values allowing the inserting,
shifting, and deleting operations. Note that at this moment, the
incoming datum has not been inserted yet and the oldest datum is
still in the sorting array. At the next clock cycle the sorting array is
updated (Fig. 8b) and the second incoming datum D=18 is also
inserted in its corresponding position performing similar actions
as with the first incoming datum. In this case, there is another
datum inside of the sorting array, which has the same value.
When this case occurs, the new datum is inserted to the left side
of the datum with the same value, having the oldest datum always
at the right-most position. This behavior is because SBC has the
comparator unit, which performs the comparison in a strictly
‘minor than’ fashion between its stored datum and the incoming
datum. Finally, in Fig. 8c, the incoming datum value is D=11,
which is placed in the SBC that just discarded its datum. Note that
this figure only shows the control signals values.

Fig. 9 exemplifies how the SBCs must be initialized. After the
reset signal is asserted, all the stored data in the SBCs take a zero
value, while the period life values are set according to CNT[i]= i

(Fig. 9), i.e. the SBC position inside the sorting array. This special
initialization for the CNT[i] is because it is always needed
to discard only one datum from the sorting array in order to
make possible the insertion operation. At this moment, the
incoming data value is D=6, thus the control signals take their
value in order to perform the insertion of this datum. Like in the
previous example, in the next clock cycle, D=6 is inserted and the
datum that has the oldest period life value is deleted, following
the sorter normal functionality. Figs. 9b–f show the insertion
process after the initialization, being D={3, 5, 0, 1, 4} the
respective incoming datum value sequence for these figures. Note
that in Fig. 9d the incoming datum value D=0 is inserted in the
left-most side of the sorting array. This is similar to the behavior
shown in Fig. 8b.
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Table 1
Performance results with other sorting architectures.

Sorter FPGA used Speed (MHz) Latency clock cycles Gate count Flip flops LUT’s count Data sorted Word size (bits)

Bitonic Virtex II 127 14 153k 7,680* NA 32 16

Odd–Even Virtex II 147 14 137k 6,112* NA 32 16

Column Virtex II 66 32 23k 1,024* NA 32 16

Shifter Virtex II 216 32 12k 512* NA 32 16

SFS Virtex E 115 49 35k 1,372 3,430 7�7 8

PRC Virtex E 159 2 384k 1,634 11,809 7�7 8

SRC Virtex E 96 49 19k 784 2,548 7�7 8

FIFO Scheme Virtex E 72 49 15k 325 1,895 49 8
FIFO Scheme Virtex II 126 32 25k 672 2,726 32 16
FIFO Scheme Virtex 5 234 32 24k 672 1,894 32 16

Table 2
Comparison with others sorting architectures.

Number of Sorter

Bitonic Odd–even Column Linear shifter SFS FIFO scheme

Multiplexers n(log2 n+log n)/2 n(log2 n–log n+4)/2–2 2n n 5n+5 4n�2

Comparators n(log2 n+log n)/4 n(log2 n–log n+4)/4–1 n n 2n+2 2n

Registers n(log2 n+log n)/2 n(log2 n–log n+4)/2–2 2n n 4n+4 2n

Counters 0 0 0 0 n+1 n

Clock Cycles (log2 n+ log n)/2 (log2 n+ log n )/2 4n n n n

R. Perez-Andrade et al. / Microelectronics Journal 40 (2009) 1705–17131712
5. Results

For the purpose of validation and comparison against other
works, the proposed architecture was modeled using the VHDL
Hardware Description Language and synthesized with Xilinx ISE 9.2
targeted for a Virtex-II XC2V3000 FPGA device and for a VirtexE
XCV200E. The design was also synthesized for a Virtex 5 XC5VLX220
FPGA device in order to show results for scalability in a more up to
date device. Table 1 summarizes the FPGA hardware resource
utilization and timing performance for the proposed architecture
and related sorters, using the Virtex-II and VirtexE devices. Table 2
shows a comparison of the proposed architecture against other
works in terms of the number of hardware elements they require. In
Table 2, n refers to the number of values being sorted.

The data for the bitonic, odd–even, column, and shifter sorters
were taken from [14], while data for the SFS, PRC, and SRC sorters
were taken from [12]. Note that a direct comparison between our
proposed sorter and other sorters is not possible, except by the SFS
sorter, which performs the same FIFO functionality. Even though
our proposed sorter is not the fastest among all the sorters shown
in Table 1, it uses less hardware resources (gates, FFs, and LUTs)
than the SFS sorter that performs similar functions. The SFS sorter
is faster than the proposed linear sorter, but this SFS needs longest
clock period to ensure the signal stability as it works during both
clock edges. Both sorters are able to discard a datum and to insert
a new datum in a single clock cycle while maintaining the rest of
the data sorted. Network sorters on the other hand would require
a larger number of clock cycles to sort the data even if only a
single datum is replaced. It is important to mention that the
numbers of flip–flops required by the first 4 sorters in Table 1 are
not explicitly reported in [14]. These values (marked with *), were
estimated by analyzing the structure of the sorters and taking into
account the number of values and word sizes shown in Table 2.

Although the bitonic and odd–even sorters have a greater
maximum frequency operation and a smaller latency than our
FIFO scheme, they need to re-sort the data once a datum has
changed. This make them impracticable for a continuously data
processing. Also both sorters require less time to sort the n data
than the linear sorters, however they require that all data to be
sorted is available at the same time, which is not always possible
specially in applications that produce data in a stream fashion.
Moreover, they require a larger number of hardware elements.

According to Table 2, the linear shifter requires the least
quantity of hardware elements, followed by the column shifter.
Although the proposed architecture requires more hardware
elements than the column shifter, it is capable of sorting n data
in as many clock cycles, similar to the linear shifter and the SFS
sorter. Even though the proposed architecture and the SFS
performs the sorting operation based on an FIFO way, differing
in their internal functionality, the FIFO scheme presented requires
less hardware elements than the SFS.

Table 3 shows the scalability results of the sorting architecture
for the Virtex 5 device. For this comparison, different word sizes
and sorting array lengths combinations were used. The scalability
data results are grouped by number of sorted elements (amount of
SBCs) and their word size in bits. All frequencies are greater than
150 MHz, thus area results are the main concern. Fig. 10 shows the
LUTs results in a graph for clarity purpose. By increasing the file
register size, the number of LUTs used grows more than twice as
the SBC amount is increased at the same proportion.
6. Conclusion

Sorting is one of the most important operations used in
computers. When implementing statistical signal processing
algorithms, it is commonly required to access values from a
sorted array in a number of different ways. Some algorithms may
require accessing the largest or smallest value in the array, the
datum stored in a specific position, or even data within a range
according to the application. Additionally, as incoming data are
processed in a stream fashion, an FIFO-like behavior is required
where the oldest datum in the array has to be removed before
making room for any new datum. In this work, a compact and
efficient hardware implementation of a linear sorter based on an
FIFO scheme was presented. The architecture, composed of an
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Table 3
Scalability results of the sorting architecture.

SBC amount 8 BITS 12 BITS 16 BITS

FF LUT MHz FF LUT MHz FF LUT MHz

8 88 232 291 120 327 318 152 377 289

16 192 568 264 256 850 266 320 840 237

32 416 1306 219 544 1806 228 672 1894 231

64 896 2931 198 1152 3815 193 1408 3981 206

128 1920 6422 171 2432 7683 172 2944 8826 173

256 4096 15,196 158 5120 17,747 151 6144 19,862 152

SBC amount 20 BITS 24 BITS

FF LUT MHz FF LUT MHz

8 184 435 277 216 500 264

16 384 1014 255 448 1138 264

32 800 2114 217 928 2357 233

64 1664 4603 196 1920 5083 203

128 3456 9899 172 3968 11,189 172

256 7168 21,701 151 8192 23,170 150

Scalability

LU
Ts

25,000
8 Bits 12 Bits 16 Bits 20 Bits 24 Bits

20,000

15,000

10,000

5,000

-
8 16 32 64 128 256

SBCs

Fig. 10. LUTs comparison results.
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array of identical processing elements, implements the insert sort
algorithm in a compact and efficient way by performing a number
of tasks in a single clock cycle. The architecture is based on four
functions whose characteristics are translated into four boolean
equations, working as an internal control logic for each of these
processing elements. The architecture can be easily adapted to any
length and data width according to specific application needs and
used as a co-processor or as a module to implement a sorting
array in specialized architectures. The nature of this architecture
exploits the parallel properties of the insert sort algorithm and
achieves excellent performance due to the use of identical
processing elements that perform a number of tasks in parallel
without the need of a complex control unit.
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